
Notes by: - Rajan Shukla 1

Total Marks:16

3.1 Classes and Objects

What is Object Oriented Programming
Object-Oriented Programming (OOP) is a programming model that is based on the concept of
classes and objects. As opposed to procedural programming where the focus is on writing
procedures or functions that perform operations on the data, in object-oriented programming
the focus is on the creations of objects which contain both data and functions together.Object-
oriented programming has several advantages over conventional or procedural style of
programming.
The most important ones are listed below:
It provides a clear modular structure for the programs.
It helps you adhere to the "don't repeat yourself" (DRY) principle, and thus make your code
much easier to maintain, modify and debug.It makes it possible to create more complicated
behavior with less code and shorter development time and high degree of reusability.
Let's assume we have a class named Fruit. A Fruit can have properties like name, color, weight,
etc. We can define variables like $name, $color, and $weight to hold the values of these
properties.When the individual objects (apple, banana, etc.) are created, they inherit all the
properties and behaviors from the class, but each object will have different values for the
properties.

Define a Class
A class is defined by using the class keyword, followed by the name of the class and a pair of
curly braces ({}). All its properties and methods go inside the braces:

Syntax
<?php
class Fruit {
// code goes here...

Notes by: - Rajan Shukla 2

}
?>
Below we declare a class named Fruit consisting of two properties ($name and $color) and two
methods set_name() and get_name() for setting and getting the $name property:

Example
<?php
class Fruit {
// Properties
public $name;
public $color;

// Methods
function set_name($name) {

$this->name = $name;
}
function get_name() {

return $this->name;
}

}
?>
Note: In a class, variables are called properties and functions are called methods!

Define Objects
Classes are nothing without objects! We can create multiple objects from a class. Each object
has all the properties and methods defined in the class, but they will have different property
values.

Objects of a class are created using the new keyword.In the example below, $apple and
$banana are instances of the class Fruit:

Example
<?php
class Fruit {
// Properties
public $name;
public $color;

// Methods
function set_name($name) {

$this->name = $name;
}
function get_name() {

return $this->name;
}

Notes by: - Rajan Shukla 3

}

$apple = new Fruit();
$banana = new Fruit();
$apple->set_name('Apple');
$banana->set_name('Banana');

echo $apple->get_name();
echo "
";
echo $banana->get_name();
?>
In the example below, we add two more methods to class Fruit, for setting and getting the
$color property:

Example
<?php
class Fruit {
// Properties
public $name;
public $color;

// Methods
function set_name($name) {

$this->name = $name;
}
function get_name() {

return $this->name;
}
function set_color($color) {

$this->color = $color;
}
function get_color() {

return $this->color;
}

}

$apple = new Fruit();
$apple->set_name('Apple');
$apple->set_color('Red');
echo "Name: " . $apple->get_name();
echo "
";
echo "Color: " . $apple->get_color();
?>
PHP - The $this Keyword
The $this keyword refers to the current object, and is only available inside methods.

Notes by: - Rajan Shukla 4

Look at the following example:

Example
<?php
class Fruit {
public $name;

}
$apple = new Fruit();
?>
So, where can we change the value of the $name property? There are two ways:

1. Inside the class (by adding a set_name() method and use $this):

Example
<?php
class Fruit {
public $name;
function set_name($name) {

$this->name = $name;
}

}
$apple = new Fruit();
$apple->set_name("Apple");
?>
2. Outside the class (by directly changing the property value):

Example
<?php
class Fruit {
public $name;

}
$apple = new Fruit();
$apple->name = "Apple";
?>
PHP - instanceof
You can use the instanceof keyword to check if an object belongs to a specific class:

Example
<?php
$apple = new Fruit();
var_dump($apple instanceof Fruit);
?>

this keyword is used inside a class, generally within the member functions to access non-static
members of a class(variables or functions) for the current object.

Notes by: - Rajan Shukla 5

Let's take an example to understand the usage of $this.

<?php

class Person {
// first name of person

private $name;

// public function to set value for name (setter method)
public function setName($name) {

$this->name = $name;
}

// public function to get value of name (getter method)
public function getName() {

return $this->name;
}

}

// creating class object
$john = new Person();

// calling the public function to set fname
$john->setName("John Wick");

// getting the value of the name variable
echo "My name is " . $john->getName();

?>

My name is John Wick

In the program above, we have created a private variable in the class with name $name and we
have two public methods setName() and getName() to assign a new value to $name variable
and to get its value respectively.

Whenever we want to call any variable of class from inside a member function, we use $this to
point to the current object which holds the variable.

We can also use $this to call one member function of a class inside another member function.

NOTE: If there is any static member function or variable in the class, we cannot refer it using the
$this.

Accessing Properties and Methods

Notes by: - Rajan Shukla 6

Once you have an object, you can use the -> notation to access methods and properties of
theobject:

$object->propertyname
$object->methodname([arg, ...])

For example:

printf("Ram is %d years old.\n", $ram->age); // property access
$ram->birthday(); // method call
$ram->set_age(21); // method call with arguments

3.2 Constructor and Desctructor
To create and initialize a class object in a single step, PHP provides a special method called as
Constructor, which is used to construct the object by assigning the required property values
while creating the object.

And for destroying the object, the Destructor method is used.
Syntax for defining Constructor and Destructor
 construct() and destruct().

<?php
class <CLASS_NAME> {

// constructor
function construct() {

// initialize the object properties
}

// destructor
function destruct() {

// clearing the object reference
}

}
?>
Constructor can accept arguments, whereas destructors won't have any argument because a
destructor's job is to destroy the current object reference.

PHP Constructor:-Let's take the example of a class Person which has two properties, fname and
lname, for this class we will define a constructor for initialising the class properties(variables) at
the time of object creation.

<?php

class Person {
// first name of person
private $fname;

Notes by: - Rajan Shukla 7

// last name of person
private $lname;

// Constructor
public function construct($fname, $lname) {

echo "Initialising the object...
";
$this->fname = $fname;
$this->lname = $lname;

}

// public method to show name
public function showName() {

echo "The Legend of India: " . $this->fname . " " . $this->lname;
}

}

// creating class object
$j = new Person("Bhagat", "Singh");
$j->showName();

?>

While earlier, we were using the -> operator to set values for the variables or used the setter
methods, in case of a constructor method, we can assign values to the variables at the time of
object creation.If a class has a constructor then whenever an object of that class is created, the
constructor is called.

PHP Destructor:-PHP Destructor method is called just before PHP is about to release any object
from its memory. Generally, you can close files, clean up resources etc in the destructor
method. Let's take an example,
<?php

class Person {
// first name of person
private $fname;
// last name of person
private $lname;

// Constructor
public function construct($fname, $lname) {

echo "Initialising the object...
";
$this->fname = $fname;
$this->lname = $lname;

}

// Destructor

Notes by: - Rajan Shukla 8

public function destruct(){

// clean up resources or do something else
echo "Destroying Object...";

}

// public method to show name
public function showName() {

echo "The Legend of India: " . $this->fname . " " . $this->lname . "
";

}
}

// creating class object
$j = new Person("Swami", "Vivekananda");
$j->showName();

?>
As we can see in the output above, as the PHP program ends, just before it PHP initiates the
release of the object created, and hence the destructor method is called.The destructor method
cannot accept any argument and is called just before the object is deleted, which happens
either when no reference exist for an object or when the PHP script finishes its execution.

3.3 Inheritance

PHP - What is Inheritance?
Inheritance in OOP = When a class derives from another class.The child class will inherit all the
public and protected properties and methods from the parent class. In addition, it can have its
own properties and methods.An inherited class is defined by using the extends keyword.

Syntax for Inheriting a Class
In PHP, extends keyword is used to specify the name of the parent class while defining the child
class. For example,

<?php

class Human {
// parent class code

}

class Male extends Human {
// child class code

}

class Female extends Human {
// child class code

}
?>
Some important points to remember while using inheritance are:

Notes by: - Rajan Shukla 9

Child class can access and use only the non-private properties and methods on the parent
class.Child class can have it's own methods too, which will not be available to the parent class.
Child class can also override a method defined in the parent class and provide its own
implementation for it.Let's look at an example:

Example
<?php
class car {
public $name;
public $color;
public function construct($name, $color) {

$this->name = $name;
$this->color = $color;

}
public function intro() {

echo "The car is {$this->name} and the color is {$this->color}.
";
}

/*protected function print(){

echo "Tata motor also famous in World";
}*/

}

class maruti extends car {
public function message() {

echo " Maruti in an Indian company of car
";
}

}
$d = new maruti("swift dzire", "red");
$d->message();
$d->intro();
//$d->print();
?>

The maruti class is inherited from the car class.This means that the maruti class can use the
public $name and $color properties as well as the public construct() and intro() methods from
the car class because of inheritance.The maruti class also has its own method: message().

3.3.Overloading

1. Function overloading or method overloading is the ability to create multiple functions of the
same name with different implementations depending on the type of their arguments.
2. Overloading in PHP provides means to dynamically create properties and methods.

Notes by: - Rajan Shukla 10

3. These dynamic entities are processed via magic methods, one can establish in a class
for various action types.
4. The overloading methods are invoked when interacting with properties or methods that
have not been declared or are not visible in the current scope
5. All overloading methods must be defined as Public.
6. After creating an object for a class, we can access a set of entities that are properties or
methods not defined within the scope of the class.
6. Such entities are said to be overloaded properties or methods, and the process is called
overloading.
7. For working with these overloaded properties or functions, PHP magic methods are used.
8. Most of the magic methods will be triggered in object context except call() method which is
used in dynamic context.
9. call() and callStatic() are called when somebody is calling a nonexistent object method in
object or static context.
public call (string $name , array $arguments) : mixed
public static callStatic (string $name , array $arguments) : mixed

10. call() is triggered when invoking inaccessible methods in an object context.

 callStatic() is triggered when invoking inaccessible methods in a static context.

The $name argument is the name of the method being called. The $arguments argument is an
enumerated array containing the parameters passed to the $name'ed method.

Example #2 Overloading methods via the call()

<?php
class Foo {

public function call($method, $args) {

if ($method === 'findSum') {
echo 'Sum is calculated to ' . $this->getSum($args)."
";

} else {
echo "Called method $method
";

}
}

private function getSum($args) {
$sum = 0;
foreach ($args as $arg) {

$sum += $arg;
}
return $sum;

}
}
$foo = new Foo;

$foo->bar1(); // Called method bar1
$foo->bar2(); // Called method bar2
$foo->findSum(10, 50, 30); //Sum is calculated to 90
$foo->findSum(10.75, 101); //Sum is calculated to 111.75
?>

3.3. Overriding

1. It is the same as other OOPs programming languages.
2. In this function, both parent and child classes should have the same function name and
number of arguments.
3. It is used to replace the parent method in child class.
4. The purpose of function overriding is to change the behavior of the parent class method.
5. The two functions with the same name and the same parameter are called function
overriding.

E.g
<?php
class aicte {
function helloWorld() {
echo "Parent"."
";
}
}
class msbte extends aicte {
function helloWorld() {
echo "\nChild";
}
}
$p = new aicte;
$c= new msbte;
$p->helloWorld();
$c->helloWorld();
?>

Cloning Object
1. The clone keyword is used to create a copy of an object.
2. If any of the properties was a reference to another variable or object, then only the reference
is copied.
3. Objects are always passed by reference, so if the original object has another object in its
properties, the copy will point to the same object.
4. This behavior can be changed by creating a clone() method in the class.

Notes by: - Rajan Shukla

11

Notes by: - Rajan Shukla

12

In shallow copy a new object is created.
The new object is an exact copy of the value in the original object.
It calls the object’s “ clone()” method.
It simply makes a copy of the reference to A to B.
It is copy of A’s address.
The addresses of A and B will be same ie. they will be pointing to the same memory location.

<?php
class MyClass {
public $amount;

}

// Create an object with a reference
$value = 5;
$obj = new MyClass();
$obj->amount = &$value;

// Clone the object
$copy = clone $obj;
/ Change the value in the original object
$obj->amount = 6;

// The copy is changed
print_r($copy);
?>

Notes by: - Rajan Shukla

13

In this the data is actually completely copies.
In this everything is duplicated and all values are copies into a new instances.
Advantage of deep copy is that the A & B do not depend on each other but the process is
relatively slower and more expensive.
In shallow copy B points to object A’s memory location whereas in deep copy all things in object
A’s memory location get copied to object B’s location.
<?php
class MyClass {
public $amount;
public function clone() {

$value = $this->amount;
unset($this->amount); // Unset breaks references
$this->amount = $value;

}
}

// Create an object with a reference
$value = 5;
$obj = new MyClass();
$obj->amount = &$value;
// Clone the object
$copy = clone $obj;

// Change the value in the original object
$obj->amount = 6;

// The copy is not changed
print_r($copy);
echo "
";

Notes by: - Rajan Shukla

14

print_r($obj);
?>

3.4. Introspection
Introspection is the ability of a program to examine an object characteristics such as its
name,parent class,properties and method.
Introspection allow us to:
1. Obtain the name of the class to which an object belongs as well as its member properties and
method
2. write generic debuggers,serializers,profilers
3. Introspection in PHP offers the useful ability to examine classes, interfaces, properties and
method with introspection we can write code that operates on any class or object
4. To examining classes the introspective function provided by PHP are
class_exits(),get_class_method(),get_class_vars() etc

1. class_exists():

This function is used to determine whether a class exists.It takes a string and return a boolean
value.

Syntax-$yes_no=class_exists(classname);

This function returns TRUE if classname is a defined class, or FALSE

2. get_class_method()

This function returns the names of the class methods.

3. get_parent_class():return the class name of an object parent class

4.is_subclass_of():check whether an object has parent class.

<?php

if(class_exists('cwipedia'))
{
$ob=new cwipedia();
echo "This is cwipedia.in";
}
else
{
echo "Not exist";
}

?>
output:Not exist

Notes by: - Rajan Shukla

15

<?php
class vesp
{
function a()
{
echo "hey CO6I";
} }
if(class_exists('vesp'))
{
$ob=new vesp();
echo "This is ves.ac.in";
echo "
";
echo $ob->a();
}
else
{
echo "Not exist";

}

?>

Output:

hey CO6I

"This is ves.ac.in

3.4. serialize

The serialize() function converts a storable representation of a value.

Syntax

serialize(value);

To serialize data means to convert a value to a sequence of bits, so that it can be stored in a file,
a memory buffer, or transmitted across a network.

<?php

Example

// Complex array

Notes by: - Rajan Shukla

16

$myvar = array(

'hello',
42,
array(1, 'two'),
'apple'

);

// Convert to a string
$string = serialize($myvar);

// Printing the serialized data
echo $string;

?>
Output:
a:4:{i:0;s:5:"hello";i:1;i:42;i:2;a:2:{i:0;i:1;i:1;s:3:"two";}i:3;s:5:"apple";}

Unserialize()
Unserialize() Function: The unserialize() is an inbuilt function php that is used to unserialize the
given serialized array to get back to the original value of the complex array, $myvar.

Syntax:
unserialize($serialized_array)
Below program illustrate both serialize() and unserialize() functions:
Program:
<?php
// Complex array

$myvar = array(
'hello',
42,
array(1, 'two'),
'apple'

);
// Serialize the above data
$string = serialize($myvar);
// Unserializing the data in $string

$newvar = unserialize($string);
// Printing the unserialized data

print_r($newvar);
?>

Output:
Array
(

[0] => hello
[1] => 42

Notes by: - Rajan Shukla

17

[2] => Array

(
[0] => 1
[1] => two

)

[3] => apple

)

	3.1 Classes and Objects
	What is Object Oriented Programming
	Define a Class
	Define Objects

	3.2 Constructor and Desctructor
	Syntax for defining Constructor and Destructor

	3.3 Inheritance
	Syntax for Inheriting a Class
	Some important points to remember while using inheritance are:

	3.3.Overloading
	Cloning Object
	1. class_exists():
	2. get_class_method()

	3.4. serialize
	Syntax

	Unserialize()
	Syntax:

